How do you divide #\frac { r ^ { 0} \cdot r } { r ^ { 24} \cdot r ^ { 98} }#?

1 Answer
Jan 23, 2018

Expression #=r^-121#

Explanation:

Expression #= (r^0 * r)/(r^24 * r^98)#

First remember #r^0 =1#

Hence, Expression #= (r)/(r^24 * r^98)#

We will now apply two laws of indices:

(i) #a^m xx a^n = a^(m+n)#

(ii) #1/a^m = a^-m#

Apply (i) to the denominator:

Expression #= (r)/(r^(24+98)) = r/r^122#

Apply (ii):

Expression #= r*r^-122#

Remember #r = r^1#

Hence, #= r^1*r^-122#

Apply (i)

Expression #= r^(1-122) = r^-121#