For what values of x is #f(x)= e^x/(5x^2) +1# concave or convex?

1 Answer
Jan 24, 2018

The function is convex for #x in (-oo,0) uu(0, +oo)#

Explanation:

#"Reminder"#

#(u/v)'=(u'v-uv')/v^2#

#(uv)'=u'v+uv'#

Calculate the first and second derivatives

#f(x)=e^x/(5x^2)+1#

#f'(x)=(e^x*(5x^2)-e^x*(10x))/(25x^4)=((x-2)e^x)/(5x^3)#

#(x-2)'=1#

#((x-2)e^x)'=e^x+(x-2)e^x=e^x(x-1)#

#f''(x)=(e^x(x-1)(5x^3)-(x-2)e^x(15x^2))/(25x^6)#

#=(e^x(x^2-x-3x+6))/(5x^4)#

#=(e^x(x^2-4x+6))/(5x^4)#

The inflection points are when #f''(x)=0#

The discriminant of the quadratic equation #x^2-4x+6=0#

is

#Delta=b^2-4ac=(-4)^2-4*(1)*(6)=16-24=-8#

As the discriminant is negative, the second derivative

#f''(x)>0#, #AA x in RR -{0}#

The variation chart is as follows

#color(white)(aaaa)##"Interval"##color(white)(aaaa)##(-oo,0)##color(white)(aaaa)##(0, +oo)#

#color(white)(aaaa)##"Sign f''(x)"##color(white)(aaaaaa)##+##color(white)(aaaaaaaa)##+#

#color(white)(aaaaaaa)##"f(x)"##color(white)(aaaaaaaa)##uu##color(white)(aaaaaaaa)##uu#

graph{e^x/(5x^2)+1 [-9.71, 10.29, -1.96, 8.04]}