How do you find the discriminant of #-21x ^ { 2} - 15x - 24#?

1 Answer
Jan 25, 2018

The discriminant is #-1791#.

Explanation:

When an expression is given in standard form, #ax^2+bx+c#, the discriminant is simply #b^2-4ac#.

With this expression:

  • #a=-21#
  • #b=-15#
  • #c=-24#

#\rightarrow b^2-4ac#

#\rightarrow (-15)^2-4(-21)(-24)#

#\rightarrow 225-2016#

#\rightarrow -1791#

Since the discriminant is negative, plugging the values of the above #a#, #b#, and #c# into the quadratic equation will result in 0 real solutions.

There will be 2 imaginary solutions, though.