How do you find the zeros of #y=x^3-10x-12#? Precalculus Complex Zeros Complex Conjugate Zeros 1 Answer Binayaka C. Jan 26, 2018 Zeros are #x =-2 , x= -1.65 and x= 3.65# Explanation: #y=x^3-10x-12# or #y = x^3+2x^2-2x^2-4x-6x-12 # or #y = x^2(x+2)-2x(x+2)-6(x+2)# or #y = (x+2)(x^2-2x-6):. x=-2# is one zero #x^2-2x-6= 0 or x^2-2x=6 # or #x^2-2x+1=6+1 # or #(x-1)^2=7 or (x-1)=+-sqrt 7# or #x=1+-2.65 :. x~~ 3.65 , x = -1.65# #:. y=x^3-10x-12= (x+2)(x+1.65)(x-3.65)# Zeros are #x =-2 , x= -1.65 and x= 3.65# [Ans] Answer link Related questions What is a complex conjugate? How do I find a complex conjugate? What is the conjugate zeros theorem? How do I use the conjugate zeros theorem? What is the conjugate pair theorem? How do I find the complex conjugate of #10+6i#? How do I find the complex conjugate of #14+12i#? What is the complex conjugate for the number #7-3i#? What is the complex conjugate of #3i+4#? What is the complex conjugate of #a-bi#? See all questions in Complex Conjugate Zeros Impact of this question 1796 views around the world You can reuse this answer Creative Commons License