Solve the equation #costheta/(1-sintheta)-costheta/(1+sintheta)=2#?

1 Answer
Jan 26, 2018

#theta=2npi+-pi/2# or #theta=npi+pi/4#, where #n# is an integer

Explanation:

#costheta/(1-sintheta)-costheta/(1+sintheta)=2#

or #(costheta(1+sintheta)-costheta(1-sintheta))/(1-sin^2theta)=2#

or #(2sinthetacostheta)/cos^2theta=2#

or #2sinthetacostheta-2cos^2theta=0#

or #costheta(sintheta-costheta)=0#

i.e. either #costheta=0# i.e. #theta=2npi+-pi/2#

or #sintheta-costheta=0# i.e. #tantheta=1# i.e. #theta=npi+pi/4#,

where #n# is an integer