Question #15c3f

3 Answers
Jan 27, 2018

#x^3+3x^2-4#

Explanation:

#(x-1)(x+2)(x+2)#

#(x+2)^2(x-1)#

Repeated expansion now helps.

#=(x^2+4x+4)(x-1)#

#=x^3-x^2+4x^2-4x+4x-4#

#=x^3+3x^2-cancel(4x)+cancel(4x)-4#

#=x^3+3x^2-4#

Jan 27, 2018

#x^3+3x^2-4#

Explanation:

#color(blue)((x-1))color(green)( (x+2) )color(red)((x+2)#

Consider just the first two pairs of brackets.

Multiply everything inside the green brackets by everything in the blue.

#color(green)(color(blue)(x)(x+2)color(white)("ddd") color(blue)(-1)(x+2))#

Notice the way the minus sign followed the 1

#x^2+2xcolor(white)("ddd")-x-2#

#x^2+x-2color(white)("d")#
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

So putting it all back together we have:

#color(purple)((x^2+x-2)) color(red)( (x+2))#

Multiply everything in the red brackets by everything in the purple.

#color(red)(color(purple)(x^2)(x+2)color(white)("ddd")color(purple)(+x)(x+2)color(white)("ddd")color(purple)(-2)(x+2) )#

#x^3+2x^2color(white)("dddd")+x^2+cancel(2x)color(white)("dd")cancel(-2x)-4#

#x^3+3x^2-4#

Jan 27, 2018

#x^3+3x^2-4#

Explanation:

#"the expansion of factors in the form "#

#(x+a)(x+b)(x+c)#

#=x^3+(a+b+c)x^2+(ab+bc+ac)x+abc#

#"here "a=-1,b=c=2#

#rArr(x-1)(x+2)(x+2)#

#=x^3+(-1+2+2)x^2+(-2+4-2)x+( -1.2.2)#

#=x^3+3x^2-4#