How do you find the derivative of #4x^3-3x+8# by first principles?

1 Answer
Jan 30, 2018

#d/(dx) (4x^3-3x+8) = 12x^2-3#

Explanation:

Given two points #(x_1, y_1)# and #(x_2, y_2)#, the slope #m# of a line through those points is given by the formula:

#m = (Delta y)/(Delta x) = (y_2-y_1)/(x_2-x_1)#

If those two points are #(x, f(x))# and #(x+h, f(x+h))# then we find that the slope of the secant joining those points is:

#m = (f(x+h)-f(x))/((x+h)-x) = (f(x+h)-f(x))/h#

As #h->0# the second point approaches the first and if the limit exists, then it gives the instantaneous slope at the point #(x, f(x))#, otherwise known as the derivative.

Given:

#f(x) = 4x^3-3x+8#

We have:

#(f(x+h)-f(x))/h#

#= ((4(x+h)^3-3(x+h)+8)-(4x^3-3x+8))/h#

#= ((4(x^3+3hx^2+3h^2x+h^3)-3(x+h)+8)-(4x^3-3x+8))/h#

#= ((color(red)(cancel(color(black)(4x^3)))+12hx^2+12h^2x+4h^3-color(red)(cancel(color(black)(3x)))-3h+color(red)(cancel(color(black)(8))))-(color(red)(cancel(color(black)(4x^3)))-color(red)(cancel(color(black)(3x)))+color(red)(cancel(color(black)(8)))))/h#

#= (12hx^2+12h^2x+4h^3-3h)/h#

#= 12x^2+12hx+4h^2-3#

So:

#d/(dx) f(x) = lim_(h->0) (f(x+h)-f(x))/h#

#color(white)(d/(dx) f(x)) = lim_(h->0) 12x^2+12hx+4h^2-3#

#color(white)(d/(dx) f(x)) = 12x^2-3#