How do you find the derivative of #4x^3-3x+8# by first principles?
1 Answer
Explanation:
Given two points
#m = (Delta y)/(Delta x) = (y_2-y_1)/(x_2-x_1)#
If those two points are
#m = (f(x+h)-f(x))/((x+h)-x) = (f(x+h)-f(x))/h#
As
Given:
#f(x) = 4x^3-3x+8#
We have:
#(f(x+h)-f(x))/h#
#= ((4(x+h)^3-3(x+h)+8)-(4x^3-3x+8))/h#
#= ((4(x^3+3hx^2+3h^2x+h^3)-3(x+h)+8)-(4x^3-3x+8))/h#
#= ((color(red)(cancel(color(black)(4x^3)))+12hx^2+12h^2x+4h^3-color(red)(cancel(color(black)(3x)))-3h+color(red)(cancel(color(black)(8))))-(color(red)(cancel(color(black)(4x^3)))-color(red)(cancel(color(black)(3x)))+color(red)(cancel(color(black)(8)))))/h#
#= (12hx^2+12h^2x+4h^3-3h)/h#
#= 12x^2+12hx+4h^2-3#
So:
#d/(dx) f(x) = lim_(h->0) (f(x+h)-f(x))/h#
#color(white)(d/(dx) f(x)) = lim_(h->0) 12x^2+12hx+4h^2-3#
#color(white)(d/(dx) f(x)) = 12x^2-3#