How do you solve #\frac { 20} { x } = \frac { 15} { 12}#?

3 Answers
Jan 30, 2018

given,

# 20/x =15/12 # or, #x= 20(12/15)=16#

Jan 30, 2018

See a solution process below:

Explanation:

Both both sides of the equation are pure fractions we can flip the fractions and solve for #x#:

#x/20 = 12/15#

Multiply each side of the equation by #color(red)(20)# to solve for #x# while keeping the equation balanced:

#color(red)(20) xx x/20 = color(red)(20) xx 12/15#

#cancel(color(red)(20)) xx x/color(red)(cancel(color(black)(20))) = (color(red)(4 xx 5)) xx (4 xx 3)/(5 xx 3)#

#x = (color(red)(4 xx color(black)(cancel(color(red)(5))))) xx (4 xx color(blue)(cancel(color(black)(3))))/(color(red)(cancel(color(black)(5))) xx color(blue)(cancel(color(black)(3))))#

#x = color(red)(4) xx 4#

#x = 16#

Jan 30, 2018

#x=16#

Explanation:

First we multiply by x.
#20cancel(/xcolor(red)(*x))=15/12color(red)(*x)#
#20=15/12*x#
Than we multiply by #12/15#.
#cancel(20)color(blue)(4)color(red)(*12/(cancel(15)color(blue)(3)))=x*cancel(15/12color(red)(*12/15))#
Simplify the expression.
#(4*cancel(12)color(blue)(4))/(cancel(3)color(blue)(1))=x#
#16=x#