How do you evaluate #\frac{k^{2}+2k-35}{3k^{2}-15k}\div \frac{k+7}{2k+1}#?

1 Answer
Feb 1, 2018

The simplified expression is #(2k+1)/(3k)#.

Explanation:

Factor the polynomials and cancel the like terms:

#(k^2+2k-35)/(3k^2-15k)-:(k+7)/(2k+1)#

#((k+7)(k-5))/(3k(k-5))-:(k+7)/(2k+1)#

#((k+7)cancel((k-5)))/(3kcancel((k-5)))-:(k+7)/(2k+1)#

#cancel(k+7)/(3k)*(2k+1)/cancel(k+7)#

#(2k+1)/(3k)#