Question #a8415

2 Answers
Feb 1, 2018

#x=pi/3 or (5pi)/3#

Explanation:

#sin^2-=1-cos^2x#

#2sin^2x=2(1-cos^2x)=2-2cos^2x#

#2-2cos^2x+cosx=2#

#2-2cos^2x+cosx-2=0#

#cosx=2cos^2x#

#1=2cosx#

#cosx=1/2#

#x=cos^(-1)(1/2)=pi/3 or (2pi-pi/3)=(5pi)/3#

So, #x=pi/3 or (5pi)/3#

Feb 1, 2018

#pi/3; pi/2; (3pi)/2; (5pi)/3#

Explanation:

#2sin^2 x + cos x - 2 = 0#
#2 - 2cos^2 x + cos x - 2 = 0#
#- 2cos^2 x + cos x = 0#
#cos x(-2cos x + 1) = 0#.
Either one of the 2 factors should be zero.
a. cos x = 0
Unit circle gives 2 solutions --> #x = pi/2 and x = (3pi)/2#
b. 2cos x = 1 --> #cos x = 1/2#.
Trig table and unit circle give 2 solutions:
#x = pi/3 and x = (5pi)/3#: