How do you factor #x^3-1/x^3+4# ?
2 Answers
Explanation:
Given:
#x^3-1/x^3+4#
Here's a partial factorisation...
Start with:
#(x-1/x)^3 = x^3-3x+3/x-1/x^3#
So:
#x^3-1/x^3+4 = (x-1/x)^3+3(x-1/x)+4#
Let:
#t = x-1/x#
Then:
#t^3+3t+4 = (t+1)(t^2-t+4)#
So:
#x^3-1/x^3+4 = (x-1/x+1)((x-1/x)^2-(x-1/x)+4)#
#color(white)(x^3-1/x^3+4) = (x-1/x+1)(x^2-2+1/x^2-x+1/x+4)#
#color(white)(x^3-1/x^3+4) = (x-1/x+1)(x^2-x+2+1/x+1/x^2)#
#=1/x^3(x+(1/2-1/2sqrt(5)))(x^2-(1/2-1/2sqrt(5))x+(3/2-1/2sqrt(5)))(x+(1/2+1/2sqrt(5)))(x^2-(1/2+1/2sqrt(5))x+(3/2+1/2sqrt(5)))#
Explanation:
Given:
#x^3-1/x^3+4 = 1/x^3(x^6+4x^3-1)#
Let us avoid the rational expressions while we factor, by focusing on the hextic polynomial
We can first treat this as a quadratic in
#x^6+4x^3-1 = (x^3)^2+4(x^3)+4-5#
#color(white)(x^6+4x^3-1) = (x^3+2)^2-(sqrt(5))^2#
#color(white)(x^6+4x^3-1) = (x^3+2-sqrt(5))(x^3+2+sqrt(5))#
Note that:
#x^3+y^3 = (x+y)(x^2-xy+y^2)#
Using this, we can factor further in terms of
Note that:
#(1+sqrt(5))^3 = 1+3sqrt(5)+3(sqrt(5))^2+(sqrt(5))^3 = 16+8sqrt(5) = 2^3(2+sqrt(5))#
Similarly:
#(1-sqrt(5))^3 = 2^3(2-sqrt(5))#
So:
#root(3)(2+sqrt(5)) = 1/2+1/2sqrt(5)#
#root(3)(2-sqrt(5)) = 1/2-1/2sqrt(5)#
Then:
#(1/2+1/2sqrt(5))^2 = 1/4(1+sqrt(5))^2 = 1/4(1+2sqrt(5)+5) = 3/2+1/2sqrt(5)#
#(1/2-1/2sqrt(5))^2 = 1/4(1-sqrt(5))^2 = 1/4(1-2sqrt(5)+5) = 3/2-1/2sqrt(5)#
So putting
#(x^3+2-sqrt(5)) = (x+(1/2-1/2sqrt(5)))(x^2-(1/2-1/2sqrt(5))x+(3/2-1/2sqrt(5)))#
#(x^3+2+sqrt(5)) = (x+(1/2+1/2sqrt(5)))(x^2-(1/2+1/2sqrt(5))x+(3/2+1/2sqrt(5)))#
Putting it all together:
#x^3-1/x^3+4#
#=1/x^3(x+(1/2-1/2sqrt(5)))(x^2-(1/2-1/2sqrt(5))x+(3/2-1/2sqrt(5)))(x+(1/2+1/2sqrt(5)))(x^2-(1/2+1/2sqrt(5))x+(3/2+1/2sqrt(5)))#