How do you solve #3( \frac { w } { 6} ) ^ { 2} - 8( \frac { w } { 6} ) + 4> 0#?

1 Answer
Feb 6, 2018

Either #w>12# or #w<4#

Explanation:

We can write #3(w/6)^2-8(w/6)+4>0#

as #3(w/6)^2-6(w/6)-2(w/6)+4>0#

or #3(w/6)(w/6-2)-2(w/6-2)>0#

or #((3w)/6-2)(w/6-2)>0#

Hence either both #(3w)/6-2>0# and #w/6-2>0# i.e. #3w>12# and #w>12# i.e. #w>4# and #w>12# i.e. #w>12#

or both #(3w)/6-2<0# and #w/6-2<0# i.e. #3w<12# and #w<12# i.e. #w<4# and #w<12# i.e. #w<12#

Hence either #w>12# or #w<4#

This may also be seen from following graph which shows that the function is positive, when either #w>12# or #w<4#

graph{3(x/6)^2-8(x/6)+4 [-2.25, 17.75, -3.88, 6.12]}