#(sqrt(x+6)-x)/(x^3-3x^2)#
Divide by #x^3#:
#((sqrt(x+6))/x^3-x/x^3)/(x^3/x^3-3x^2/x^3)=((sqrt(x+6))/x^3-1/x^2)/(1-3/x)#
#lim_(x->-oo)((sqrt(x+6))/x^3-1/x^2)/(1-3/x)=(lim_(x->-oo)((sqrt(x+6))/x^3-1/x^2))/(lim_(x->-oo)(1-3/x)#
#lim_(x->-oo)((sqrt(x+6))/x^3-1/x^2)=lim_(x->-oo)(sqrt(x+6))/x^3-lim_(x->-oo)(1/x^2)#
#lim_(x->-oo)(sqrt(x+6))/x^3=0#
#lim_(x->-oo)(1/x^2)=0#
#0-0=0#
#lim_(x->-oo)(1-3/x)=lim_(x->-oo)(1)-lim_(x->-oo)(3/x)#
#lim_(x->-oo)(1)=1#
#lim_(x->-oo)(3/x)=0#
#:.#
#1-0=1#
#0/1=0#
Hence:
#lim_(x->-oo)(sqrt(x+6)-x)/(x^3-3x^2)=0#