How do you find an equation of the tangent line to the curve at the given point #y = 3cos(x) # and #x=pi/4#?
1 Answer
Feb 6, 2018
Explanation:
#•color(white)(x)m_(color(red)"tangent")=dy/dx" at x = a"#
#dy/dx=-3sinx#
#x=pi/4tody/dx=-3sin(pi/4)=-3xx1/sqrt2=-(3sqrt2)/2#
#rArry=3cosx=3cos(pi/4)=3xx1/sqrt2=(3sqrt2)/2#
#"using "m=-(3sqrt2)/2,(x_1,y_1)=(pi/4,(3sqrt2)/2)#
#y-(3sqrt2)/2=-(3sqrt2)/2(x-pi/4)#
#rArry=-(3sqrt2)/2(x-pi/4)+(3sqrt2)/2#