Prove that (a) #sin(x-(3pi)/2)=cosx# and (b) #sin(theta-pi/3)+cos(theta-pi/6)=sintheta#?

1 Answer

Verified the above relations below.

Explanation:

(a) LHS
= #sin(x-(3pi)/2)#

= #sinxcos((3pi)/2)-cosxsin((3pi)/2)#

As #cos((3pi)/2)=0# and #sin((3pi)/2)=-1#

Substituting we have

= #sinx xx0-cosx xx(-1)#

= #0+cosx#

= #cosx# =RHS

(b) #LHS=sin(theta-pi/3)+cos(theta-pi/6)#

Expanding using addition formula

#sin (A-B)=sinA cosB - cosA sinB# and
#cos (A-B)=cosA cosB + sinA SinB#

LHS
= #sinthetacos(pi/3)-costhetasin(pi/3)+costhetacos(pi/6)+sinthetasin(pi/6)#

As #cos(pi/6)=sin(pi/3)=sqrt3/2# and #cos(pi/3)=sin (pi/6)=1/2#

Therefore LHS=#sinthetaxx1/2-costhetaxxsqrt3/2+costhetaxxsqrt3/2+sinthetaxx1/2#

= #sintheta(1/2+1/2)#

= #sintheta#

= RHS