Given:
#r=theta-sin((10theta)/3-pi/8)#
#(dr)/(d(theta))=1-(10/3)cos((10theta)/3-pi/8)#
wkt
#x=rcostheta#
#(dx)/(d(theta))=r(-sintheta)+costheta((dr)/(d(theta)))#
at #theta = pi/4#
#r=pi/4-sin((10pi/4)/3-pi/8)#
#=-0.008#
#(dr)/(d(theta))=1-(10/3)cos((10pi/4)/3-pi/8)#
#=3.029#
#(dx)/(d(theta))=-0.008(-sinpi/4)+cos(pi/4)(3.029)#
#=0.008(0.707)+0.707(3.029)#
#(dx)/(d(theta))=2.147#
#y=rsintheta#
#(dy)/(d(theta))=r(costheta)+sintheta((dr)/(d(theta)))#
At #theta=pi/4#
#(dy)/(d(theta))=-0.008(cospi/4)+sin(pi/4)(3.029)#
#(dy)/(d(theta))=2.136#
Slope of the tangent line of
#r=theta-sin((10theta)/3-pi/8)#
at #theta=pi/4# is
#(dy)/(dx)=((dy)/(d(theta)))/((dx)/(d(theta)))=2.136/2.147#
Thus,
#(dy)/(dx)=0.995#