What is the derivative of # y = (cosx-sinx)/(cosx+sinx)#?
2 Answers
Use the quotient rule:
Distribute the terms to simplify
Multiply by the conjugate of the denominator over itself:
# dy/dx = 2sec2x(tan2x - sec 2x) #
Explanation:
We have:
# y = (cosx-sinx)/(cosx+sinx)#
We can write:
# y = (cosx-sinx)/(cosx+sinx) * (cosx-sinx)/(cosx-sinx)#
# \ \ = (cos^2x-2sinxcosx+sin^2x)/(cos^2x-sin^2x)#
# \ \ = (1-sin2x)/(cos2x)#
# \ \ = sec2x-tan2x#
Then differentiating wrt
# dy/dx = 2sec2xtan2x - 2sec^2 2x #
# \ \ \ \ \ = 2sec2x(tan2x - sec 2x) #