| ( (x-1)^4, (x-1)^3, (x-1)^2, (x-1), 1 ), ( (x-2)^4, (x-2)^3, (x-2)^2, (x-2), 1 ), ( (x-3)^4, (x-3)^3, (x-3)^2, (x-3), 1 ), ( (x-4)^4, (x-4)^3, (x-4)^2, (x-4), 1 ), ( (x-5)^4, (x-5)^3, (x-5)^2, (x-5), 1 ) | = ?
1 Answer
Explanation:
We seek the value of the determinant,
D = | ( (x-1)^4, (x-1)^3, (x-1)^2, (x-1), 1 ), ( (x-2)^4, (x-2)^3, (x-2)^2, (x-2), 1 ), ( (x-3)^4, (x-3)^3, (x-3)^2, (x-3), 1 ), ( (x-4)^4, (x-4)^3, (x-4)^2, (x-4), 1 ), ( (x-5)^4, (x-5)^3, (x-5)^2, (x-5), 1 ) |
For Simplicity, write:
x_1=(x-1) ,x_2=(x-2) ,x_3=(x-3) ,
x_4=(x-4) ,x_5=(x-5)
Then we can write the given determinant as:
D = | ( x_1""^4, x_1""^3, x_1""^2, x_1"", 1 ), ( x_2""^4, x_2""^3, x_2""^2, x_2"", 1 ), ( x_3""^4, x_3""^3, x_3""^2, x_3"", 1 ), ( x_4""^4, x_4""^3, x_4""^2, x_4"", 1 ), ( x_5""^4, x_5""^3, x_5""^2, x_5"", 1 ) |
Which is a Vandermonde matrix of order
D = prod_(1 le i lt j le n) (x_i-x_j)
\ \ \ = (x_1-x_2)(x_1-x_3)(x_1-x_4)(x_1-x_5) *
\ \ \ \ \ \ \ \ (x_2-x_3)(x_2-x_4)(x_2-x_5) *
\ \ \ \ \ \ \ \ (x_3-x_4)(x_3-x_5) * (x_4-x_5)
\ \ \ = (1)(2)(3)(4) * (1)(2)(3) * (1)(2) * (1)
\ \ \ = (4!)(3!)(2!)
\ \ \ = 24 * 6 * 2
\ \ \ = 288