Prove that #"PV"^gamma="constant"#. ?

1 Answer
Feb 10, 2018

We know from the 1st law of thermodynamics #dQ = dU+dW#

For an adiabatic process, we can say #dQ =0#,

so, #dU+dW =0=dU+PdV#......1

We know, #dU = nC_v dT#.....2

For an ideal gas, #PV= nRT#

Or, #T =(PV)/(nR) #

or, #dT = (PdV + VdP)/(nR)#

Putting in 2,we get,

#dU = C_v/R (PdV +VdP)#

Putting this value of #dU# in 1 we get,

#(dP)/P = -(dV)/V (C_v +R)/C_v#

or, #(dP)/P = -(dV)/V *gamma# (as #gamma = (C_p)/(C_v)=(C_v +R)/C_v#)

or, # int (dP)/P = -gamma int (dV)/V#

or, #ln P = -gamma ln V +c#

or, #ln P + gamma ln V = k#

or, #ln P + ln V ^gamma =k#

or, #ln(PV^gamma) = k#

so, #PV^gamma# = constant