How do you simplify #(\frac { a ^ { - 2} b ^ { - \frac { 1} { 4} } c ^ { 3} } { a ^ { - \frac { 1} { 2} } b ^ { \frac { 3} { 6} } c ^ { 0} } ) ^ { 4}#?

1 Answer
Feb 11, 2018

The expression simplifies to

#(c^12)/(a^6  b^3)#

also written as  #a^(-6)  b^(-3)  c^12#

Explanation:

Simplify

#((a^(−2)   b^(-(1)/(4))  c^3)/(a^(−(1)/(2))    b^((3)/(6))    c⁰))^4#

1) Clear the parentheses by multiplying every single exponent inside the parentheses by the exponent outside -- which is #4#

#(a^(−8)   b^(-(4)/(4))  c^12)/(a^(−(4)/(2))   b^((12)/(6))    c⁰)#

2) Reduce the fractional exponents to lowest terms

#(a^(−8)   b^(-1)   c^12)/(a^(−2)   b^2   c⁰)#

3) Get rid of the negative exponents by flipping them to the other side of the fraction bar and making them positive

#(a^2   c^12)/(a^8   (b^2)(b^1)     c^0)#

4) Write #b^1# as #b#, and write #c⁰# as #1#, then multiply

#(a^2   c^12)/(a^8   b^3)#

5) Reduce #(a^2)/(a^8)   "to"   (1)/a^6#

#(c^12)/(a^6  b^3)# #larr# answer

6) If you want an expression that isn't a fraction, you can get rid of the denominator by flipping the numbers into the numerator and changing the signs of their exponents

#a^(-6)  b^(-3)  c^12# #larr# same answer