Evaluate #(sqrt(-1))/(sqrt(-6)sqrt(-1))#?

1 Answer
Feb 14, 2018

#sqrt(-1)/(sqrt(-6)sqrt(-1)) = -sqrt(6)/6 i#

Explanation:

If #n < 0# then #sqrt(n) = sqrt(-n) i# where #i# is the imaginary unit.

So we find:

#sqrt(-1)/(sqrt(-6)sqrt(-1)) = 1/sqrt(-6) = 1/(sqrt(6)i) = (sqrt(6)i)/(6i^2) = -sqrt(6)/6 i#