Can someone help me solve this? f(x)=arccos(2x+4)−sqrt[3-3x^2] find f′(x)?

2 Answers
Feb 16, 2018

#(-2)/(sqrt(1-4x^2-16x-16)) +(3x)/(sqrt(3-3x^2)) #

Explanation:

So we can differentiate each half of this equation.

We know chain rule, power rule, and the derivative of arccosine which is
#d/dx arccos(x) = -1/(sqrt(1-x^2))#

From this, we see those, we see the first term has derivative
#d/dx arccos(2x+4) = d/dx(2x+4) cdot -1/(sqrt(1-(2x+4)^2)) = (-2)/(sqrt(1-4x^2-16x-16))#

The second term has
#d/dx sqrt(3-3x^2) = d/dx (3-3x^2)^(1/2) = 1/2 cdot d/dx(3-3x^2) cdot (3-3x^2)^(-1/2) = (-3x)/(sqrt(3-3x^2)) #

So the final answer is the difference between the two, as written above. There seems to be no simplification by combining the terms, which I have written out below as proof:
#3-3x^2 = 3(1-x^2) = 3(1-x)(1+x)#
#4x^2 + 16x + 15 = (2x+5)(2x+3)#

therefore,

#f'(x) = (-2)/(sqrt(1-4x^2-16x-16)) +(3x)/(sqrt(3-3x^2)) #

#= (3xsqrt(-(2x+5)(2x+3)) -2sqrt(3(1-x)(1+x)) )/(sqrt(-3(1-x)(1+x)(2x+5)(2x+3))) #

Feb 16, 2018

#f'(x)=(-2sqrt(1-(2x+4)^2))/(1-(2x+4)^2)+(xsqrt(3-3x^2))/(1-x^2)#

Explanation:

.

#f(x)=arccos(2x+4)-sqrt(3-3x^2)#

#y_1=arccos(2x+4)#

#y_2=sqrt(3-3x^2)#

#y=y_1-y_2#

#dy/dx=dy_1/dx-dy_2/dx# #color(red)(Equation 1)#

#y_1=arccos(2x+4)# can be written as:

#cosy_1=2x+4#

Let's take derivatives of both sides:

#-siny_1dy_1=2dx#

Let's divide both sides by #-siny_1dx#:

#dy_1/dx=-2/siny_1#

But we know:

#sin^2y_1+cos^2y_1=1#. If we solve for #siny_1# we get:

#siny_1=sqrt(1-cos^2y_1)#

But #cos^2y_1=(2x+4)^2#. Let's plug this in:

#siny_1=sqrt(1-(2x+4)^2)#, therefore:

#dy_1/dx=-2/sqrt(1-(2x+4)^2)=(-2sqrt(1-(2x+4)^2))/(1-(2x+4)^2)#

#color(red)(dy_1/dx=(-2sqrt(1-(2x+4)^2))/(1-(2x+4)^2))#

#y_2=sqrt(3-3x^2)=(3-3x^2)^(1/2#

Let's let #u=3-3x^2#, then:

#(du)/dx=-6x#

#y_2=u^(1/2#

#dy_2/(du)=1/2u^(-1/2)#

The Chain Rule says:

#dy_2/dx=dy_2/(du)*(du)/dx#

#dy_2/dx=1/2u^(-1/2)(-6x)#

Let's substitute back for #u#:

#dy_2/dx=1/2(3-3x^2)^(-1/2)(-6x)#

#dy_2/dx=(-3x)/sqrt(3-3x^2)=((-3x)(sqrt(3-3x^2)))/(3-3x^2)#

#color(red)(dy_2/dx=(-xsqrt(3-3x^2))/(1-x^2))#

According to #color(red)(Equation 1)# above:

#dy/dx=(-2sqrt(1-(2x+4)^2))/(1-(2x+4)^2)+(xsqrt(3-3x^2))/(1-x^2)#