"Recall the definition of the inclination of a line L:"
"If" \ \ m \ \ "is the slope of line" \ \ L \ \ "and" \ \ \theta \ \ "is the inclination of line" \ \ L, "then:"
\qquad \qquad \qquad \qquad \qquad \qquad tan(\theta) \ = \ m, \qquad \qquad "and" \qquad \quad \theta \in [ 0, \pi ). \qquad \qquad \qquad \quad \ \ (1)
"So, to find the inclination of a line, we can start by finding its"
"slope, and then use eqn. (1)."
"The line we are given is the line through the two points:"
\qquad \qquad \qquad \qquad \qquad ( - sqrt{3}, -1 ) \qquad \qquad "and" \qquad \qquad (0, -2 ).
"The slope of this line is:"
\qquad m \ = \ { -1 - (-2) } / { - sqrt{3} - 0 } \ = \ { -1 + 2 } / { - sqrt{3} } \ = \ { 1 } / { - sqrt{3} } \ = \ - { 1 } / { sqrt{3} }.
"The slope of this line is:"
\qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad m \ = \ - { 1 } / { sqrt{3} }.
"So, by eqn. (1), for the inclination" \ \ \theta \ \ "of this line:"
\qquad \qquad \qquad \qquad \qquad \quad \ tan(\theta) \ = \ - { 1 } / { sqrt{3} }, \qquad \qquad \theta \in [ 0, \pi ).
"As" \ \ tan(\theta) \ \ "is negative, and" \quad \theta \in [ 0, \pi ) , "we see that"
\ \theta \in"Quadrant II."
"So, we have:"
\qquad \qquad \qquad \qquad \qquad \quad \ tan(\theta) \ = \ - { 1 } / { sqrt{3} }, \qquad \qquad \theta \in"Quadrant II." \qquad \quad \quad \ \ (2)
"Recognizing the connection between the value above, and"
"the 30-60-90 right triangle, and remembering the 30-60-90"
"right triangle, we recall:"
\qquad \qquad \qquad \qquad \qquad \qquad \qquad \quad \quad \ tan( 30^@ ) \ = \ { 1 } / { sqrt{3} }.
"So, a Quadrant II angle which has tangent value the opposite"
"of the above, is the Quadrant II angle that has reference angle" \ 30^@, "that is to say, the angle" \ 180^@ - 30^@:
\qquad \qquad \qquad \qquad \quad \quad \quad \ tan( 180^@ - 30^@ ) \ = \ - { 1 } / { sqrt{3} }.
\qquad \qquad :. \qquad \qquad \quad \quad \ \ tan( 150^@ ) \ = \ - { 1 } / { sqrt{3} }.
"So:"
\qquad \quad \ \ tan( 150^@ ) \ = \ - { 1 } / { sqrt{3} } \ = \ m \qquad "and" \qquad \quad 150^@ \in [ 0, \pi ).
"Thus:"
\qquad \qquad \qquad \theta \ = \ \150^@ \ \ "is the inclination of the given line."
"In radians:"\qquad \quad \150^@ \ = \ 150 \cdot \pi / 180 \ = \ 15/18 \pi \ = \ 5/6 \pi \ = \ { 5 \pi }/6.
"So, finally:"
\qquad \quad \ \theta \ = \ \150^@ \ = \ { 5 \pi }/6 \qquad "is the inclination of the given line."