Solve #x.dy/dx-y=2x^2y#?

1 Answer
Feb 18, 2018

#y=xe^[[x^2+c]]#

Explanation:

#xdy/dx=2x^2y+y#, separating the variables.....

#1/ydy/dx=[2x^2+1/x]# so # dy/y=2x^2dx+dx/x#, integrating...
#int1/ydy=int2x^2dx+int1/xdx#, we have #lny=x^2+lnx+C#

Which gives #ln[y/x]=x^2+C#.

#e^[ln[y/x]]= e^[[x^2+c]]# [ theory of logs]

i.e, #y/x= e^[[x^2+c]]# and #so, y=xe^[[x^2+c]]]#