Use synthetic division to solve: #(x^2+7x-1)# divided by #(x+1)# ?
1 Answer
Explanation:
We start by writing the coefficients of the dividend inside an L shape and the zero associated with the divisor just outside:
#-1color(white)(" ")"|"color(white)(" ")1color(white)(" ")7color(white)(" ")color(black)(-1)#
#color(white)(-1" ")"|"underline(color(white)(" "1" "7" "-1)#
Carry the first coefficient from the dividend down to below the line:
#-1color(white)(" ")"|"color(white)(" ")1color(white)(" ")7color(white)(" ")color(black)(-1)#
#color(white)(-1" ")"|"underline(color(white)(" "1" "7" "-1))#
#color(white)(-1" ")color(white)("|")color(white)(" ")1#
Multiply this first coefficient of the quotient by the test zero and write it in the second column:
#-1color(white)(" ")"|"color(white)(" ")1color(white)(" "-)7color(white)(" ")color(black)(-1)#
#color(white)(-1" ")"|"underline(color(white)(" "1" ")-1color(white)(" "-1))#
#color(white)(-1" ")color(white)("|")color(white)(" ")1#
Add up the second column and write the sum as the next term of the quotient:
#-1color(white)(" ")"|"color(white)(" ")1color(white)(" "-)7color(white)(" ")color(black)(-1)#
#color(white)(-1" ")"|"underline(color(white)(" "1" ")-1color(white)(" "-1))#
#color(white)(-1" ")color(white)("|")color(white)(" ")1color(white)(" "-)6#
Multiply this second coefficient of the quotient by the test zero and write it in the third column:
#-1color(white)(" ")"|"color(white)(" ")1color(white)(" "-)7color(white)(" ")color(black)(-1)#
#color(white)(-1" ")"|"underline(color(white)(" "1" ")-1color(white)(" ")color(black)(-6)#
#color(white)(-1" ")color(white)("|")color(white)(" ")1color(white)(" "-)6#
Add up the third column to give the remainder:
#-1color(white)(" ")"|"color(white)(" ")1color(white)(" "-)7color(white)(" ")color(black)(-1)#
#color(white)(-1" ")"|"underline(color(white)(" "1" ")-1color(white)(" ")color(black)(-6)#
#color(white)(-1" ")color(white)("|")color(white)(" ")1color(white)(" "-)6color(white)(" ")color(red)(-7)#
Reading off the coefficients, we have found:
#(x^2+7x-1)/(x+1) = x+6-7/(x+1)#