How do you find the derivative of (-2)/(x(ln x)^3). ?

1 Answer
Feb 20, 2018

#dy/dx=2(ln(x)+3)/(x^2ln(x)^4)#

Explanation:

We want to find the derivative of

#y=-2/(xln(x)^3)=-2x^-1/ln(x)^3#

Use the quotient rule if #y=f/g# then

#dy/dx=(f'g-fg')/g^2#

Here #f=x^-1=>f'=-x^-2# and #g=ln(x)^3=>g'=3ln(x)^2/x#

#dy/dx=-2(-x^-2ln(x)^3-x^-1 3ln(x)^2/x)/ln(x)^6#

#=-2(-x^-2ln(x)^3-3ln(x)^2x^-2)/ln(x)^6#

#=2(ln(x)^3+3ln(x)^2)/(x^2ln(x)^6)#

#=2(ln(x)+3)/(x^2ln(x)^4)#