Let, #I=int(4x^2-x+12)/(x^3+4x)dx=int(4x^2-x+12)/{x(x^2+4)}dx#.
We will use Heaviside's Method to decompose the
integrand #(4x^2-x+12)/{x(x^2+4)}# into Partial Fraction :
#color(red)(4x^2-x+12)/{color(blue)(x)(color(red)(x^2+4))}=A/x+(Bx+C)/(x^2+4)," say for some "A,B,C in RR#.
Then, we have, #A=[color(red)((4x^2-x+12)/(x^2+4))]_(color(blue)(x=0))=12/4=3#.
Sub.ing #A=3# above, we have,
#(4x^2-x+12)/{x(x^2+4)}-3/x=(Bx+C)/{x(x^2+4)}, i.e.,#
#(Bx+C)/{x(x^2+4)}={(4x^2-x+12)-3(x^2+4)}/{x(x^2+4)}#,
#=(x^2-x)/{x(x^2+4)}#.
#rArr (Bx+C)/(x^2+4)=(x-1)/(x^2+4)," giving, "B=1, C=-1#.
Altogether, #(4x^2-x+12)/{x(x^2+4)}=3/x+(x-1)/(x^2+4)#.
#:. I=int3/xdx+int(x-1)/(x^2+4)dx#,
#=3ln|x|+intx/(x^2+4)dx-int1/(x^2+2^2)dx#,
#=3ln|x|+1/2int(2x)/(x^2+4)dx-1/2arc tan(x/2)#,
#=3ln|x|+1/2int{d/dx(x^2+4)}/(x^2+4)dx-1/2arc tan(x/2)#.
#rArr I=3ln|x|+1/2ln(x^2+4)-1/2arc tan(x/2)+C, or, #
#I=ln|x^3*sqrt(x^2+4)|-1/2arc tan(x/2)+C#.
Feel & Spread the Joy of Maths.!