Write the function as:
#x^sin(1/x) = (e^lnx)^sin(1/x) = e^(lnxsin(1/x))#
Consider now the limit:
#lim_(x->oo) lnxsin(1/x)#
if we write it in the form:
# lim_(x->oo) lnxsin(1/x) = lim_(x->oo) sin(1/x)/(1/lnx)#
it is in the indeterminate form #0/0# and we can apply l'Hospital's rule:
# lim_(x->oo) lnxsin(1/x) = lim_(x->oo) (d/dx sin(1/x))/(d/dx (1/lnx))#
# lim_(x->oo) lnxsin(1/x) = lim_(x->oo) (-cos(1/x)/x^2)/(-1/(xln^2x))#
# lim_(x->oo) lnxsin(1/x) = lim_(x->oo) cos(1/x) ln^2x/x#
Using l'Hosiptal's rule again:
#lim_(x->oo) ln^2x/x = lim_(x->oo) (2lnx)/x = lim_(x->oo) 2/x = 0 #
and then:
# lim_(x->oo) lnxsin(1/x) = lim_(x->oo) cos(1/x) ln^2x/x = 0#
As #e^x# is continuous for #x=0#:
#lim_(x->oo) e^(lnxsin(1/x)) = e^(( lim_(x->oo) lnxsin(1/x))) = e^0 = 1#
graph{x^sin(1/x) [-10, 10, -5, 5]}