Evaluate the following integral:(i)∫dx/√x-x² from 1/4 to 1/2?

1 Answer
Feb 20, 2018

#pi/12#

Explanation:

#int_(1/4)^(1/2) dx/sqrt(x-x^2)#

Let #x= sin^2 u#. This gives #dx= 2sinu cos u du#
When # x= 1/4, sin u= 1/2 ->u=sin^(-1) (1/2) = pi/6#

and when #x= 1/2, sin u=1/sqrt2 -> u= pi/4#

#int_(1/4)^(1/2) dx/sqrt(x-x^2)=int_(1/4)^(1/2) dx/(sqrtx sqrt (1-x)#

#= int_(u=pi/6)^ (u= pi/4) (2 sin u cos u) (du)/((sin u ) (cos u))#

#=int_(pi/6)^(pi/4) du = [u]_(pi/6) ^(pi/4)#

#(pi/4- pi/6) =pi/12#