If #(5sqrt2−e)(3sqrt2+e)=fsqrt2-6#, where #e# and #f# are positive integers, find #e# and #f#?

1 Answer
Feb 21, 2018

#e=6# and #f=12#

Explanation:

As #(5sqrt2−e)(3sqrt2+e)=fsqrt2-6#

i.e. #5sqrt2(3sqrt2+e)-e(3sqrt2+e)=fsqrt2-6#

or #30+5esqrt2-3esqrt2-e^2=fsqrt2-6#

or #30-e^2+2esqrt2=fsqrt2-6#

Hence #30-e^2=-6# i.e. #e^2=36# and as #e# is a positive integer

we have #e=6#

and #2esqrt2=fsqrt2#

i.e. #f=2e=12#