Prove that sin theta/1-cos theta +tan theta /1+cos theta=sec theta*cosec theta +cot theta?

1 Answer
Feb 21, 2018

Please see below.

Explanation:

#sintheta/(1-costheta)+tantheta/(1+costheta)#

= #(sintheta(1+costheta))/((1-costheta)(1+costheta))+(tantheta(1-costheta))/((1+costheta)(1-costheta))#

= #(sintheta(1+costheta))/(1-cos^2theta)+(tantheta(1-costheta))/(1-cos^2theta)#

= #(sintheta(1+costheta))/sin^2theta+(sintheta(1-costheta))/(costhetasin^2theta)#

= #(1+costheta)/sintheta+(1-costheta)/(costhetasintheta)#

= #1/sintheta+costheta/sintheta+1/(costhetasintheta)-1/sintheta#

= #csctheta+cottheta+secthetacsctheta-csctheta#

= #secthetacsctheta+cottheta#