Show that cos²π/10+cos²4π/10+cos² 6π/10+cos²9π/10=2. I am a bit confused if I make Cos²4π/10=cos²(π-6π/10) & cos²9π/10=cos²(π-π/10), it will turn negative as cos(180°-theta)=-costheta in the second quadrant. How do I go about proving the question?

2 Answers
Feb 21, 2018

Please see below.

Explanation:

#LHS=cos^2(pi/10)+cos^2((4pi)/10)+cos^2((6pi)/10)+cos^2((9pi)/10)#

#=cos^2(pi/10)+cos^2((4pi)/10)+cos^2(pi-(4pi)/10)+cos^2(pi-(pi)/10)#

#=cos^2(pi/10)+cos^2((4pi)/10)+cos^2(pi/10)+cos^2((4pi)/10)#

#=2*[cos^2(pi/10)+cos^2((4pi)/10)]#

#=2*[cos^2(pi/2-(4pi)/10)+cos^2((4pi)/10)]#

#=2*[sin^2((4pi)/10)+cos^2((4pi)/10)]#

#=2*1=2=RHS#

Feb 21, 2018

We know that,
#color(red)(costheta = sin (pi/2-theta)# so also,
#color(red)(cos^2theta = sin^2 (pi/2-theta)#
#color(magenta)(costheta = -sin((3pi)/2-theta)# so also,
#color(magenta)(cos^2theta = (-sin((3pi)/2-theta))^2 = sin^2((3pi)/2-theta)#

getting back to the question,

#color(red)(cos²π/10)+cos²(4π)/10+cos² (6π)/10+color(magenta)(cos²(9π)/10)=2#

#color(red)(sin²(pi/2-π/10))+cos²(4π)/10+cos² (6π)/10+color(magenta)((-sin((3pi)/2-(9π)/10))^2)=2#

#sin²((5pi)/10-π/10)+cos²(4π)/10+cos² (6π)/10+sin²((3pi)/2-(9π)/10)=2#

#[sin²(4π)/10+cos²(4π)/10]+[cos² (6π)/10+sin²((15pi)/10-(9π)/10)]=2#

#[sin²(4π)/10+cos²(4π)/10]+[cos² (6π)/10+sin²(6π)/10]=2#

Applying, #sin^2theta + cos^2theta = 1#

#1+1=2#
#2=2#

Hence Proved.

P.S. you were going right, just note that even if its negative, the final answer turns out to be positive as the #cos# is squared according to the question. Any negative number squared is positive :)