Question #50ed4
1 Answer
Feb 22, 2018
Explanation:
#"given the zeros of a polynomial say"#
#"x=a and "x=b" then the factors are"#
#(x-a)" and "(x-b)#
#"and the polynomial can be written as "#
#f(x)=k(x-a)(x-b)larrcolor(blue)"k is a multiplier"#
#"here "x=1+-sqrt5#
#rArr(x-(1+sqrt5))(x-(1-sqrt5))" are the factors"#
#rArrf(x)=k(x-1-sqrt5)(x-1+sqrt5)#
#"let "k=1#
#rArrf(x)=(x-1)^2-(sqrt5)^2#
#color(white)(rArrf(x))=x^2-2x+1-5#
#color(white)(rArrf(x))=x^2-2x-4#
#"to find the zeros solve "x^2-2x-4=0#