Question #50ed4

1 Answer
Feb 22, 2018

#x^2-2x-4=0#

Explanation:

#"given the zeros of a polynomial say"#

#"x=a and "x=b" then the factors are"#

#(x-a)" and "(x-b)#

#"and the polynomial can be written as "#

#f(x)=k(x-a)(x-b)larrcolor(blue)"k is a multiplier"#

#"here "x=1+-sqrt5#

#rArr(x-(1+sqrt5))(x-(1-sqrt5))" are the factors"#

#rArrf(x)=k(x-1-sqrt5)(x-1+sqrt5)#

#"let "k=1#

#rArrf(x)=(x-1)^2-(sqrt5)^2#

#color(white)(rArrf(x))=x^2-2x+1-5#

#color(white)(rArrf(x))=x^2-2x-4#

#"to find the zeros solve "x^2-2x-4=0#