Solve the equation sin(x+pi/6)=2cosx in the range of 0<x<2pi?

1 Answer
Feb 22, 2018

#x=\frac{\pi }{3}##" "##\color(blue){and}##" "# #x=\frac{4\pi }{3}#

Explanation:

#sin(x+\frac{\pi }{6})=2cos(x)#

Manipulate the left hand side by using the identity:

#\sin (s+t)=\cos (s)\sin (t)+\cos (t)\sin (s)#

#\cos (x)\sin (\frac{\pi }{6})+\cos (\frac{\pi }{6})\sin (x)=2cos(x)#

Put the values #\sin (\frac{\pi }{6})=\frac{1}{2}# #\color(red){and}# #\cos (\frac{\pi }{6})=\frac{\sqrt{3}}{2}#

#\cos (x)\sin (\frac{\pi }{6})+\cos (\frac{\pi }{6})\sin (x)=2cos(x)#

# #
# #

#\frac{1}{2}\cos (x)+\frac{\sqrt{3}}{2}\sin (x)=2cos(x)#

Subtract #2cos(x)# from both sides and then simplify to get:

#\sqrt{3}\sin (x)-3\cos (x)=0#

Dividing both sides with #cos(x)# will give us:

#\frac{\sqrt{3}\sin (x)-3\cos (x)}{\cos (x)}=\frac{0}{\cos (x)}#

Simplify:

#\tan (x)=\sqrt{3}#

# #
# #

General solutions for the above equation are #x=\frac{\pi }{3}+\pi n#

Solutions within the specified range are:

#x=\frac{\pi }{3}##" "##\color(blue){and}##" "# #x=\frac{4\pi }{3}#