How do you Solve 6sin(x)+5cos(x)=4? What are the first 2 positive solutions?

1 Answer
Feb 22, 2018

See below.

Explanation:

#6sinx+5cosx=4#

Subtract #5cosx# from both sides:

#6sinx=4-5cosx#

Square both sides:

#36sin^2x=(4-5cosx)^2#

#36sin^2x-(4-5cosx)^2=0#

Identity:

#color(red)bb(sin^2x=1-cos^2x)#

#36(1-cos^2x)-(4-5cosx)^2=0#

Expand and simplify:

#36-36cos^2x-(16-40cosx+25cos^2x)=0#

#36-36cos^2x-16+40cosx-25cos^2x=0#

#20-61cos^2x+40cosx=0#

#61cos^2x-40cosx-20=0#

Let : #u=cosx#

#61u^2-40u-20=0#

Using the quadratic formula:

#u=(-(-40)+-sqrt((-40)^2-(4(61)(-20))))/(2(61))#

#u=(40+-sqrt(1600-(-4880)))/122#

#u=(40+-sqrt(6480))/122=(20+-18sqrt(5))/61#

#u = cosx#

#cosx=(20+-18sqrt(5))/61#

#=arccos(cosx)=arccos((20+18sqrt(5))/61)=>x#

#=arccos((20+18sqrt(5))/61)+2pik~~0.15706+pik#

#2pi-arccos((20+18sqrt(5))/61)+2pik~~6.12613+2pik#

#=arccos(cosx)=arccos((20-18sqrt(5))/61)=>x#

#=arccos((20-18sqrt(5))/61)+2pik~~1.90917+pik#

#=-arccos((20-18sqrt(5))/61)+2pik~~4.37401+pik#

If we test these solutions we find only:

#arccos((20-18sqrt(5))/61)+2pik~~1.90917+pik#

#2pi-arccos((20+18sqrt(5))/61)+2pik~~6.12613+2pik#

Are true.

The first two positive values are:

#arccos((20-18sqrt(5))/61)+2pik~~1.90917+pik# with #k=0#

#2pi-arccos((20+18sqrt(5))/61)+2pik~~6.12613+2pik# with #k=0#

#k in ZZ#

The graph verifies this:

enter image source here