Integrate?

#csc^2x/cotxdx#

1 Answer
Feb 23, 2018

#intcsc^2x/cotxdx=-ln|cotx|+"C"#

Explanation:

We can make a u-substitution:

Let #u=cot(x)=>du=-csc^2xdx#

#intcsc^2x/cotxdx=>-int1/udu#

The integral of #1/u# is simply #ln|u|+"C"#

So #-int1/u=-ln|u|+"C"#

Undo the substitution:

#=-ln|cotx|+"C"#