Question #b4d99

1 Answer
Feb 24, 2018
  • #x=a secA sinB#
    #=>(x/a)^2=sec^2A cdot sin^2B" "...(1)#

  • #y=b secA cosB#
    #=>(y/b)^2=sec^2A cdot cos^2B" "...(2)#

  • #z=c tanA#
    #=>(z/c)^2=tan^2A" "...(3)#

From, 1st, 2nd and 3rd equation, we get

#(x/a)^2+(y/b)^2+(z/c)^2#

#=sec^2A cdot sin^2B+sec^2A cdot cos^2B+tan^2A#

#=sec^2A(sin^2B+cos^2B)+tan^2A#

#=sec^2A+tan^2A#