Given:
#f(theta)=theta^2-csctheta#
Let
#r=f(theta)#
Then,
#r=theta^2-csctheta#
At #theta=(3pi)/4#
#r=((3pi)/4)^2-csc((3pi)/4)#
#((3pi)/4)^2=(9pi^2)/16#
#csc((3pi)/4)=sqrt2#
#r=(9pi^2)/16-sqrt2#
#(dr)/(d(theta))=2theta-(-cscthetacottheta)#
#(dr)/(d(theta))=2theta+cscthetacottheta#
#(dr)/(d(theta))=2((3pi)/4)+csc((3pi)/4)cot((3pi)/4)#
#2((3pi)/4)=(3pi)/2#
#csc((3pi)/4)=sqrt2#
#cot((3pi)/4)=-1#
#(dr)/(d(theta))=(3pi)/2+sqrt2(-1)#
#(dr)/(d(theta))=(3pi)/2-sqrt2#
To find
Slope of the curve at
#theta=(3pi)/4#
#x=rcostheta#
#y=rsintheta#
#dx/(d(theta))=r(-sintheta)+costheta(dr)/(d(theta))#
#dx/(d(theta))=-r(sintheta)+costheta(dr)/(d(theta))#
#r=(9pi^2)/16-1/sqrt2#
#sintheta=sin((3pi)/4)#
#sin((3pi)/4)=1/sqrt2#
#costheta=cos((3pi)/4)#
#cos((3pi)/4)=-1/sqrt2#
#costheta=-1/sqrt2#
#(dr)/(d(theta))=(3pi)/2-sqrt2#
#dx/(d(theta))=-((9pi^2)/16-1/sqrt2)(1/sqrt2)+(-1/sqrt2)((3pi)/2-sqrt2)#
#dx/(d(theta))=1/sqrt2((9pi^2)/16-1/sqrt2)-1/sqrt2((3pi)/2-sqrt2)#
#dx/(d(theta))=1/sqrt2(((9pi^2)/16-1/sqrt2)-((3pi)/2-sqrt2))#
#dy/(d(theta))=rcostheta+sintheta(dr)/(d(theta))#
#r=(9pi^2)/16-1/sqrt2#
#sintheta=sin((3pi)/4)#
#sin((3pi)/4)=1/sqrt2#
#costheta=cos((3pi)/4)#
#cos((3pi)/4)=-1/sqrt2#
#costheta=-1/sqrt2#
#(dr)/(d(theta))=(3pi)/2-sqrt2#
#dy/(d(theta))=((9pi^2)/16-1/sqrt2)(-1/sqrt2)+(1/sqrt2)((3pi)/2-sqrt2)#
#dy/(d(theta))=-1/sqrt2((9pi^2)/16-1/sqrt2)+(1/sqrt2)((3pi)/2-sqrt2)#
#dy/(d(theta))=-1/sqrt2(((9pi^2)/16-1/sqrt2)-((3pi)/2-sqrt2))#
#dy/dx=(dy/(d(theta)))/(dx/(d(theta)))#
#=(-1/sqrt2(((9pi^2)/16-1/sqrt2)-((3pi)/2-sqrt2)))/(1/sqrt2(((9pi^2)/16-1/sqrt2)-((3pi)/2-sqrt2)))#
Cancelling
#dy/dx=-1#
Slope of the curve at
#theta=(3pi)/4#is -1