How do you solve #(x^4-9x^3-7x^2-8x+2)/(x^2+x+1)#?
1 Answer
Feb 25, 2018
Explanation:
We can long divide the coefficients like this:
finding that:
#(x^4-9x^3-7x^2-8x+2)/(x^2+x+1) = x^2-10x+2#
Alternatively, note that:
#(x^2+x+1)(x-1) = x^3-1#
So:
#(x^4-9x^3-7x^2-8x+2)/(x^2+x+1) = ((x^4-9x^3-7x^2-8x+2)(x-1))/(x^3-1)#
#color(white)((x^4-9x^3-7x^2-8x+2)/(x^2+x+1)) = (x^5-10x^4+2x^3-x^2+10x-2)/(x^3-1)#
#color(white)((x^4-9x^3-7x^2-8x+2)/(x^2+x+1)) = (x^3(x^2-10x+2)-1(x^2-10x+2))/(x^3-1)#
#color(white)((x^4-9x^3-7x^2-8x+2)/(x^2+x+1)) = (color(red)(cancel(color(black)((x^3-1))))(x^2-10x+2))/color(red)(cancel(color(black)((x^3-1))))#
#color(white)((x^4-9x^3-7x^2-8x+2)/(x^2+x+1)) = x^2-10x+2#