How do you solve #-249= 11x - 84#?

4 Answers
Feb 25, 2018

#x=-15#

Explanation:

#"isolate 11x by adding 84 from both sides"#

#-249+84=11xcancel(-84)cancel(+84)#

#rArr11x=-165#

#"divide both sides by 11"#

#(cancel(11) x)/cancel(11)=(-165)/11#

#rArrx=-15#

#color(blue)"As a check"#

Substitute this value into the right side and if equal to the left side then it is the solution.

#"right "=(11xx-15)-84=-165-84=-249#

#rArrx=-15" is the solution"#

Feb 25, 2018

#x=-15#

Explanation:

#-249=11x-84#

Add 84 to both sides of the equation

#-165=11x#

Divide both sides by 11

#-15=x#

Therefore

#x=-15#

Feb 25, 2018

#x=-15#

Explanation:

Given: #-249=11x-84#

We add #84# to both sides and get:

#-249+84=11x-color(red)cancelcolor(black)84+color(red)cancelcolor(black)84#

#=>11x=-165#

#(color(red)cancelcolor(black)11x)/color(red)cancelcolor(black)11=-165/11#

#x=-15#

Feb 25, 2018

#x = -15#

Explanation:

Given expression,

#−249=11x−84#

We need to find #x#

Step 1: #11x= −249+84# (we move the number with x to the left side so the operator changes. If #+ ->(-)#; #- -> (+)#

Step 2: #11x= -165# (we now solve everything that is in the right)

Step 3: #x= -165/11# (#x# stays on the left while the number goes to the right and divides. If it had gotten from right to left then it would have multiplied but in this case it didn't.)

Step 4: #x= -15# (divide)

Hope this helps!