(sin 3x + sin x) / (cos 3x + cos x) = sqrt 3, sin x = ?

2 Answers

#sin x=1/2# [when #0<=x<=pi/2#]

Explanation:

#(sin 3x + sin x) / (cos 3x + cos x) = sqrt 3#

We'll apply 2 identities here, #color(red)(sin3x = 3sinx-4sin^3x)# and #color(red)(cos3x=4cos^3x-3cosx)#

or, #(color(red)(3sinx-4sin^3x)+sinx)/(color(red)(4cos^3x-3cosx)+cosx)=sqrt3#

Combining #sinx# terms,

or, #(4sinx-4sin^3x)/(4cos^3x-2cosx)= sqrt3#

or, #[4sinx(1-sin^2x)]/[2cosx(2cos^2x-1)]=sqrt3#

Again, 2 more identities, #color(magenta)(cos^2x = 1-sin^2x# and #color(magenta)(cos2x=2cos^2x-1#

or, #(2sinxcancel(color(magenta)(cos^2x))^(cosx))/(cancelcosxcolor(magenta)(cos2x))= sqrt3#

or, #(2sinxcosx)/(cos2x)=sqrt3#

One more here, #color(blue)(sin2x=2sinxcosx#

or, #color(blue)(sin2x)/(cos2x)= sqrt3#

or, #tan2x= sqrt3#

or, #tan2x= tan(pi/3)#

or,# 2x= pi/3#

or, #x= pi/6#

so, #sinx= sin(pi/6)= 1/2#

Feb 25, 2018

#sinx=1/2#

Explanation:

We may use,

#rarrsinA+sinB=2sin((A+B)/2)*cos((A+B)/2)# and

#rarrcosA+cosB=2cos((A+B)/2)*cos((A+B)/2)#

Given that,

#rarr(sin3x+sinx)/(cos3x+cos)=sqrt(3)#

#rarr(cancel(2)sin((3x+x)/2)*cancel(cos((3x-x)/2)))/(cancel(2)cos((3x+x)/2)*cancel(cos((3x-x)/2)))=sqrt(3)#

#rarrtan2x=tan60°#

#rarr2x=60°#

#rarrx=30°#

Now, #sinx=sin30°=1/2#