How do you find the equations for the tangent to the curve in the point [-1,-2]?

#x^2y^2=4#

3 Answers
Feb 27, 2018

#y= -2x-4#

Explanation:

Differentiate the equation implicitly:

#x^2y^2 = 4#

#d/dx (x^2y^2) = 0#

#2xy^2+2x^2ydy/dx = 0#

For #x != 0#:

#y^2=-xydy/dx#

#(1) " " dy/dx = -y/x#

The general equation of the tangent line in the point #(x_0,y_0)# is:

#y = y_0+ [dy/dx]_(x_0,y_0)(x-x_0)#

that is, based on #(1)#

#y = y_0-y_0/x_0(x-x_0)#

and for #x_0 = -1#, #y_0=-2#:

#y = -2-2(x+1)#

#y= -2x-4#

enter image source here

Feb 27, 2018

You can do it like this:

Explanation:

#sf(x^2y^2=4)#

Using The Product Rule:

#sf((d[y^2])/(dx).x^2+y^2.(d[x^2])/(dx)=0)#

Differentiating implicitly:

#sf(2y.(dy)/(dx).x^2+y^(2).2x=0)#

#sf((dy)/(dx)=(-y^(cancel(2)).cancel(2x))/(cancel(2y).x^cancel(2)))#

#sf((dy)/(dx)=-y/x)#

This gives the gradient m of the tangent line:

#:.##sf(m=-(-2)/(-1)=-2)#

The tangent line is of the form:

#sf(y=mx+c)#

#:.##sf(-2=(-2xx-1)+c)#

#sf(c=-4)#

So the equation of the tangent line is:

#sf(y=-2x-4)#

The functions look like this:

graph{(x^2y^2-4)(-2x-4-y)=0 [-10, 10, -5, 5]}

Feb 27, 2018

#y=-2x-4#

Explanation:

#"differentiate "color(blue)"implicitly with respect to x"#

#"differentiate "x^2y^2" using the "color(blue)"product rule"#

#•color(white)(x)m_(color(red)"tangent")=dy/dx" at "(-1,-2)#

#rArr(x^2 .2ydy/dx+2xy^2)=0#

#rArr2x^2ydy/dx=-2xy^2#

#rArrdy/dx=(-2xy^2)/(2x^2y)=-y/x#

#dy/dx" at "(-1,-2)=-(-2)/(-1)=-2#

#rArry+2=-2(x+1)#

#rArry=-2x-4larrcolor(red)"equation of tangent"#
graph{(x^2y^2-4)(y+2x+4)=0 [-20, 20, -10, 10]}