Determine all values of θ between 0 and 4π for which sin θ =√3 over 2 ?

2 Answers
Feb 28, 2018

The values of #theta# are #pi/3,(2pi)/3,(7pi)/3,(8pi)/3#.

Explanation:

We must use following properties:

#color(red)(sin x = sin(2npi+x))#
#color(red)(sin x = sin((2n-1)pi-x))#

Where #n# is an integer.
Since #sqrt3/2 >0#, #theta# has to be in the first and second quadrant #(0<=theta<=pi# and #2pi<=theta<=3pi)#.

We know #sin (color(red)(pi/3))= sqrt3/2# so using the first identity we get:

#sin (pi/3) = sin (2pi+pi/3)#
#sin (pi/3) = sin (color(red)((7pi)/3))#

And using the second:

#sin (pi/3)= sin(pi-pi/3)#
#sin (pi/3)=sin (color(red)((2pi)/3))#

First one again:

#sin ((2pi)/3)=sin(2pi+(2pi)/3)#
#sin ((2pi)/3)=sin (color(red)((8pi)/3))#

We can only use #n=1# because if it would to be bigger, #theta > 4pi#, which is not what we need.

All the values in red are the solutions to the equality

#sin theta = sqrt3/2# ,

so #theta -> {color(red)(pi/3),color(red)((2pi)/3),color(red)((7pi)/3),color(red)((8pi)/3)}#.

Feb 28, 2018

#theta=pi/3,(2pi)/3,(7pi)/3,(8pi)/3.#

Explanation:

#sintheta=root()(3)/2rArrcolor(red)(theta=kpi+(-1)^k(pi/3),kinZ)#
We have, #thetain[0,4pi]#
Taking #k=0,+-1,+-2,+-3... #
#k=0rArrtheta=pi/3in[0,4pi]#
#k=1rArrtheta=pi-pi/3=(2pi)/3in[0.4pi]#
#k=2rArrtheta=2pi+pi/3=(7pi)/3in[0,4pi]#
#k=3rArrtheta=3pi-pi/3=(8pi}/3in[0,4pi]#
#k=4rArrtheta=4pi+pi/3=(13pi)/3!in[0,4pi]#
#k=5rArrtheta=5pi-pi/3=4pi+(pi-pi/3)=4pi+(2pi)/3>4pi#
Also,#k=-1rArrtheta=-pi-pi/3=-(4pi)/3<0#
Hence, #theta=pi/3,(2pi)/3,(7pi)/3,(8pi)/3.#