Show that # tan(52.5°) = sqrt6 − sqrt3 − sqrt2 + 2# ?
c3 maths question
c3 maths question
3 Answers
It is quadratic in
Putting
Let
Proved.
Smaller approach...
Rules Used:-
#color(red)(ul(bar(|color(green)(sin2theta=2 cdot sintheta cdot costheta))|#
#cos2theta=2cos^2theta-1#
#=>color(red)(ul(bar(|color(blue)(2cos^2theta=1+cos2theta))|#
Explanation:
#tan(52.5^@)#
#=sin(52.5^@)/cos(52.5^@)#
#=sin(105/2)^@/cos(105/2)^@#
#=(2 cdot sin(105/2)^@ cdot cos(105/2)^@) /(2 cdot cos(105/2)^@ cdot cos(105/2)^@#
#=sin(105/2 xx2)^@/(2 cdot cos^2(105/2)^@#
#=sin(105)^@/(cos(105)^@+1)#
#=sin(60^@+45^@)/(cos(60^@+45^@)+1)#
#=(sin60^@ cdot cos45^@+cos60^@ cdot sin45^@)/(cos60^@ cdot cos45^@ -sin60^@ cdot sin45^@+1 #
#=(sqrt3/2 cdot 1/sqrt2+1/2 cdot 1/sqrt2)/(1/2 cdot 1/sqrt2-sqrt3/2 cdot 1/sqrt2+1#
#=((sqrt3+1)/(2sqrt2))/((1-sqrt3+2sqrt2)/(2sqrt2)#
#=(sqrt3+1)/(1-sqrt3+2sqrt2#
#=((sqrt3+1) cdot (1+2sqrt2+sqrt3))/((1+2sqrt2)^2-(sqrt3)^2)#
#=(sqrt3+2sqrt6+3+1+2sqrt2+sqrt3)/(1+4sqrt2+8-3)#
#=(2(sqrt6+sqrt3+sqrt2+2))/(6+4sqrt2)#
#=((sqrt6+sqrt3+sqrt2+2))/(3+2sqrt2)#
#=((3-2sqrt2)(sqrt6+sqrt3+sqrt2+2))/((3+2sqrt2)(3-2sqrt2)#
#=(sqrt6-sqrt3-sqrt2+2)/1#
#=sqrt6-sqrt3-sqrt2+2# Hope it helps...
Thank you...
Let
Now
As