How do you simplify #((n+1)!)/((n-2)! )#?

1 Answer
Mar 2, 2018

#n^3-n#

Explanation:

The numerator can be rewritten as:

#((n+1) * (n+1-1) * (n+1-2) * (n+1-3)!)/((n-2)!)#

Simplifying:

#((n+1) * (n) * (n-1) * (n-2)!) / ((n-2)!)#

We can cancel the #(n-2)!# values out:

#(n+1)(n-1)(n)#

#=n^3-n#

And there we have our answer.