How do you factor the expression #20x^2 + 60 x + 45#?

2 Answers
Mar 2, 2018

#20x^2 +60x +45#

#=5(4x^2 +12x+9)#

#=5(4x^2 +6x +6x+9)#

#=5 (2x(2x+3) + 3(2x+3))#

#=5 (2x+3)(2x+3)#

ALTERNATIVELY,

#20x^2 +60x+45#

#=5(4x^2+12x+9)#

#=5((2x)^2 +2*2x*3 +3^2))#

#=5(2x+3)^2#

Mar 2, 2018

#(10x+15)(2x+3)=5(2x+3)^2#

Explanation:

We have the quadratic expression #20x^2+60x+45#.

This is of the form #ax^2+bx+c#, and here, #a=20, b=60, c=45#.

First we must find #axxc#. Here, #axxc=20xx45=900#

Now, we must find two factors of #axxc=900#, that add up to give #b#.

You can do this fast after loads of practice, and I'm just going to go and say it: The factors are #30# and #30#. They multiply to give #900#, and add up to give #60#. We can write our equation as:

#20x^2+30x+30x+45#

#=10x(2x+3)+15(2x+3)#

#=(10x+15)(2x+3)#

#=5(2x+3)(2x+3)#

#=5(2x+3)^2#

Hence factored.