How do you solve #5x + 13= 2x - 41#?
1 Answer
Mar 2, 2018
Explanation:
#"collect terms in x on the left side of the equation and "#
#"numeric values on the right side"#
#"subtract 2x from both sides"#
#5x-2x+13=cancel(2x)cancel(-2x)-41#
#rArr3x+13=-41#
#"subtract 13 from both sides"#
#3xcancel(+13)cancel(-13)=-41-13#
#rArr3x=-54#
#"divide both sides by 3"#
#(cancel(3) x)/cancel(3)=(-54)/3#
#rArrx=-18#
#color(blue)"As a check"# Substitute this value into the equation and if both sides are equal then it is the solution.
#"left "=(5xx-18)+13=-90+13=-77#
#"right "=(2xx-18)-41=-36-41=-77#
#rArrx=-18" is the solution"#