How do you evaluate #(2x + 16) ( \frac { 1} { 2} x - 8)#?

2 Answers
Mar 3, 2018

#=x^2-8x-128#

Explanation:

#(2x+16)(1/2x-8)#

Distribute

#(2x)(1/2x)+(2x)(-8)+(16)(1/2x)+(16)(-8)#

#(2x^2)/2 -16x+(16/2x)-128#

#x^2 - 16x+8x-128#

#=x^2-8x-128#

Mar 3, 2018

Expand brackets.

Explanation:

This method helps me when it comes to expansions I can't do off the top of my head:

#2x(1/2x - 8) + 16(1/2x - 8)#

Then just expand as normal:

#(2x)(1/2x) - (2x)(8) + (16)(1/2x) - (16)(8)#

#=x^2 - 16x + 8x -128#

#= x^2 - 8x -128#