The base of a triangular pyramid is a triangle with corners at #(6 ,7 )#, #(3 ,1 )#, and #(4 ,2 )#. If the pyramid has a height of #8 #, what is the pyramid's volume?

1 Answer
Mar 4, 2018

V=4

Explanation:

#V=1/6*a*h_a*H#
#H# is the hight into the 3-dimension.
#p_1=(6,7)#
#p_2=(3,1)#
#p_3=(4,2)#
#H=8#
To find the distanc #a# between #p_1# and #p_2# we use pythagoras:
#a^2+b^2=c^2#
Notice that the #c# from pythagoras equals our #a#.
#((x_1-x_2)^2+(y_1-y_2)^2)^(1/2)=a#
#((6-3)^2+(7-1)^2)^(1/2)=a#
#(9+36)^(1/2)=a#
#sqrt(45)=a#
#((x_1-x_3)^2+(y_1-y_3)^2)^(1/2)=b#
#sqrt(29)=b#
#((x_2-x_3)^2+(y_2-y_3)^2)^(1/2)=c#
#sqrt(2)=c#

#c^2=a^2+b^2-2abcos(gamma)#
#2=45+29-2sqrt(45*29)cos(gamma)#
#2-45-29=-2sqrt(1305)cos(gamma)#
#cos^-1(36/sqrt(1305))=gamma#
#4,76°~~gamma#
#sin(gamma)=h_a/b|*b#
#sin(gamma)*b=h_a#
#0.45~~h_a#

#V=1/6*sqrt(45)*0.45*8~~4#