First we multiply everything by #sinA# since #cscA=1/sinA# and sinA/sinA=1#
#sinA(3cscA-2sinA-5)=sinA(0)#
#3-2sin^2A-5sinA=0#
Substitute #x=sinA#
#2x^2+5x-3=0#
#x=(-b+-sqrt(b^2-4ac))/2#
#color(white)(x)=(-5+-sqrt(5^2-4(2*-3)))/4#
#color(white)(x)=(-5+-sqrt(25+24))/4#
#color(white)(x)=(-5+-sqrt(49))/4#
#color(white)(x)=(-5+-7)/4#
#color(white)(x)=(-5-7)/4 or (-5+7)/4#
#color(white)(x)=-12/4 or 2/4#
#color(white)(x)=-3 or 1/2#
However, #-1lesinAle1# so we must take #1/2#
#sinA=1/2#
#A=arcsin(1/2)=pi/6-=30^circ, A=(5pi)/6-=150^circ#
#A=(npi)/2+-pi/3, ninZZ#
#color(white)(A)=n90^circ+-60^circ, ninZZ#